首页> 外文OA文献 >Ground-based gamma-ray telescopes as ground stations in deep-space lasercom
【2h】

Ground-based gamma-ray telescopes as ground stations in deep-space lasercom

机译:地面伽马射线望远镜作为深空地面站   激光通信

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As the amount of information to be transmitted from deep-space rapidlyincreases, the radiofrequency technology has become a bottleneck in spacecommunications. RF is already limiting the scientific outcome of deep-spacemissions and could be a significant obstacle in the developing of mannedmissions. Lasercom holds the promise to solve this problem, as it willconsiderably increase the data rate while decreasing the energy, mass andvolume of onboard communication systems. In RF deep-space communications, wherethe received power is the main limitation, the traditional approach to boostthe data throughput has been increasing the receiver's aperture, e.g. the 70-mantennas in the NASA's Deep Space Network. Optical communications also canbenefit from this strategy, thus 10-m class telescopes have typically beensuggested to support future deep-space links. However, the cost of bigtelescopes increase exponentially with their aperture, and new ideas are neededto optimize this ratio. Here, the use of ground-based gamma-ray telescopes,known as Cherenkov telescopes, is suggested. These are optical telescopesdesigned to maximize the receiver's aperture at a minimum cost with somerelaxed requirements. As they are used in an array configuration and multipleidentical units need to be built, each element of the telescope is designed tominimize its cost. Furthermore, the native array configuration would facilitatethe joint operation of Cherenkov and lasercom telescopes. These telescopesoffer very big apertures, ranging from several meters to almost 30 meters,which could greatly improve the performance of optical ground stations. The keyelements of these telescopes have been studied applied to lasercom, reachingthe conclusion that it could be an interesting strategy to include them in thefuture development of an optical deep-space network.
机译:随着从深空传输的信息量迅速增加,射频技术已成为空间通信的瓶颈。射频已经限制了深空任务的科学成果,并且可能成为载人飞行发展的重大障碍。 Lasercom有望解决这个问题,因为它将大大提高数据速率,同时降低车载通信系统的能量,质量和体积。在接收功率是主要限制的RF深空通信中,提高数据吞吐量的传统方法一直在增加接收器的孔径,例如NASA的深空网络中的70条天线。光通信也可以从这种策略中受益,因此通常建议使用10米级的望远镜来支持未来的深空链路。但是,大望远镜的成本随其孔径成倍增加,因此需要新的想法来优化该比率。在这里,建议使用被称为切伦科夫望远镜的地面伽马射线望远镜。这些是光学望远镜,旨在以最小的成本最大化接收器的孔径,并满足一些要求。由于它们用于阵列配置中,并且需要构建多个相同的单元,因此望远镜的每个元件都旨在最大程度地降低其成本。此外,本机阵列配置将有助于切伦科夫和激光望远镜的联合操作。这些望远镜提供很大的孔径,范围从几米到近30米,可以极大地改善光学地面站的性能。研究了这些望远镜的关键要素在激光通信中的应用,得出的结论是,将其纳入光学深空网络的未来发展可能是一种有趣的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号